1,3-DITHIANE-1-p-TOSYLSULFIMIDE: PREPARATION, REACTIONS & ¹³C NMR Richard B. Greenwald, * David H. Evans & John R. DeMember

Polaroid Corporation, Cambridge, Massachusetts (Received in USA 20 August 1975; received in UK for publication 29 September 1975)

Two recent communications^{1,2} reported the facile cleavage of 2-substituted 1,3-dithianes and related compounds with N-chloro-<u>p</u>toluene-sulfonamide sodium salt (chloramine-T) under mild conditions, thus making these systems useful as carbonyl protecting functions. It was postulated¹ that the <u>mono</u>-N-tosylsulfimides of various 2-alkyl substituted dithio and oxathio heterocycles open to produce a stabilized carbonium ion which subsequently undergoes fragmentation leading to a carbonyl compound.

We have now isolated and characterized such a <u>mono-N-tosylsulfimide</u> thereby giving more credence to the earlier speculations^{1,2}. Thus, reaction of 1,3-dithiane (<u>1</u>) with one <u>or</u> two equivalents of chloramine-T in 95% methanol-water at ambient temperatures led to the isolation of the <u>mono-N-tosylsulfimide</u> (<u>2</u>) as a stable crystalline solid (mp 164-5[°]) in a 60% yield³. No indications were found for the formation of the <u>bis-N-tosylsulfimide</u> (<u>9</u>), even when large excesses of chloramine-T were employed and the reaction mixture was subject to prolonged reflux. Apparently there is insufficient stabilization of the intermediate carbonium ion which would result from ring fission of <u>2</u> to promote the breakdown of the 2-unsubstituted 1,3-dithiane system. This supposition was supported when acetone was isolated (as the 2,4-dinitrophenylhydrazone) from the complex reaction mixture produced by the treatment of 2,2-dimethyl-1, 3-dithiane⁴ with chloramine-T under the same conditions employed for the preparation of <u>2</u>.

Selective oxidation of the unfunctionalized sulfur of $\frac{2}{2}$ was performed at room temperature using three eqts. of 40% peracetic acid to give $\frac{3}{2}$ (mp 187-188[°]) in 60% crude yield. Attempts to further oxidize $\frac{3}{2}$ with peracid at room temperature were unsuccessful, while at elevated temperatures

3885

ð

only the disulfone 5 was isolated. Complete oxidation of $3 \text{ to } 4 \text{ (mp 219-221}^{\circ})$ could be accomplished in 60% yield in an acetic acid-acetic anhydride solvent system using 2.2 molar eqts. of KMnO₄. Alternatively, 4 was also obtained by KMnO₄ oxidation of 2 using 6.5 molar eqts. of oxidant. Other 2-unsubstituted 1,3-dithianes were found to react analogously to 1; e.g., 7^5 gave in <u>ca</u>. 50% yield a <u>single</u> N-tosylsulfimide (8, mp 153-155°), the structure of which was assigned on the basis of its¹³C nmr spectrum.

Table 2 shows the deviations $(\Delta\delta's)$ obtained by comparing the observed and calculated ¹³CMR shifts for <u>8</u> and <u>8a</u>. Calculated shifts were obtained by additivity of substituents (see eq. Table 2) of the model compounds <u>1</u>, <u>2</u> and <u>7</u>. This method has been shown to have general success in predicting the ¹³CMR shifts of unknown compounds^{6,7,8}. The temperature independence of the ¹³CMR spectrum of <u>2</u> (Table 1) indicates that the NTs group is essentially in one conformation which is expected to be equatorial in <u>2</u>^{9,10,11}. Since the equatorial NTs conformation is expected⁹ also in <u>8</u> and <u>8a</u>, the deviations in Table 2 are largely independent of conformational equilibria.

Compound

C Atom	1	2	<u>7</u>	8
2	30.9	46.5(48.8)**	31.5(32.2)	50.4
4	28.9	26.5(28.9)	45.2(45.2)	43.3
5	26.3	26.2(27.7)	99.5(100.0)	105.3
6	28.9	46.4(48.2)	25.6(26.4)	41.2
7		142.0(142.7)		141.5
8		125.5(126.2)		125.6
9		129.2(129.8)		129.3
10		14 1 .0(140.5)		141.4
11		20.7(21.8)		20.7
12			64.9(66.2)	65.8
13			64.9(66.2)	65.6
14			169.2(169.9)	168.3
15			60.7(62.2)	61.5
16			13.7(14.1)	13.2

*Cmr shifts are reported in ppm downfield (+) from TMS in DMSO-d $_6$ and were recorded on a Varian CFT-20 spectrometer.

** Parenthetic values are cmr shifts relative to TMS in CD₂Cl₂ and they were relatively constant through the temperature range 35 to -90° C. Only slight broadening of the signals of C² - C⁶ in <u>2</u> and of all the C atoms in <u>7</u> was observed at -90° C. The small deviations between the calculated and observed 13 CMR shifts of <u>8</u> vs. <u>8a</u> clearly establish <u>8</u> as the correct structure. The deviations of C²(+3.2) and C⁵(+5.8) are related to steric and/or electronic interactions of the substituents. We are presently studying this and similar 1,3 interactions in a series of dithiane derivatives and will report on this in detail in a future publication.

						11	3				
Table	2	-	Comparison	of	the		CMR	Shifts	(PPM)	Observed	with
	_										

Those Calculated for Ring Carbon Atoms

<u>C-Atom</u>	<u>Calculated Shifts</u> *		Obs. Shifts	Deviation	
	8	<u>8a</u>	<u>8</u>	<u>8</u>	<u>8a</u>
2	47.2	47.2	50.4	+3.2	+3.2
4	42.8	62.7	43.3	+0.5	-19.4
5	99.5	99.5	·105.3	+5.8	+5.8
6	43.1	23.2	41.5	-1.6	+18.3

^{*}Calc. from the equation:

 $\delta^{\operatorname{Cn}}(\underline{\mathbf{B}}) = \delta^{\operatorname{Cn}}(\underline{\mathbf{1}}) + \left[\delta^{\operatorname{Cn}}(\underline{\mathbf{2}}) - \delta^{\operatorname{Cn}}(\underline{\mathbf{1}})\right] + \left[\delta^{\operatorname{Cn}}(\underline{\mathbf{2}}) - \delta^{\operatorname{Cn}}(\underline{\mathbf{1}})\right]$

References

- 1. D. W. Emerson & H. Wynberg, Tetrahedron Lett., 1971, 3445.
- 2. W. F. T. Huurdeman, H. Wynberg, & D. W. Emerson, ibid, 1971, 3449.
- 3. All new compounds reported have given satisfactory elemental analyses.
- Prepared by the general procedure of E. J. Corey & D. Seebach, Organic Syn., <u>50</u>, 72 (1970).
- 5. E. G. Howard & R. V. Lindsey, Jr., J. Amer. Chem. Soc., <u>82</u>, 158 (1960).
- J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press New York, N.Y., 1972, pp. 128-310.
- G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley, New York, N.Y., 1972, pp. 40, 51, 60, & 86.
- 8. J. R. DeMember and F. A. Wallace, J. Amer. Chem. Soc., in press.
- 9. See: N. S. Zefirov and I. V. Kazimirchik, Russian Chem. Revs., 43, 107 (1974) and references therein.
- 10. E. L. Eliel, Angew. Chem., <u>84</u>, 779 (1972).
- 11. E. L. Eliel, A. A. Hartmann, & A. G. Abatjoblon, J. Amer. Chem. Soc., <u>96</u>, 1807 (1974).

No. 45